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Abstract. The ability to constrain the mechanisms that transport organic carbon into the deep ocean is complicated 10 

by the multiple physical, chemical, and ecological processes that intersect to create, transform, and transport 

particles in the ocean.  In this manuscript we develop and parameterize a data-assimilative model of the multiple 

pathways of the biological carbon pump (NEMUROBCP).  The mechanistic model is designed to represent sinking 

particle flux, active transport by vertically migrating zooplankton, and passive transport by subduction and vertical 

mixing, while also explicitly representing multiple biological and chemical properties measured directly in the field 15 

(including nutrients, phytoplankton and zooplankton taxa, carbon dioxide and oxygen, nitrogen isotopes, and 

234Thorium).  Using 30 different data types (including standing stock and rate measurements related to nutrients, 

phytoplankton, zooplankton, and non-living organic matter) from Lagrangian experiments conducted on 11 cruises 

from four ocean regions, we conduct an objective statistical parameterization of the model and generate one million 

different potential parameter sets that are used for ensemble model simulations.  The model simulates in situ 20 

parameters that were assimilated (net primary production and gravitational particle flux) and parameters that were 

withheld (234Thorium and nitrogen isotopes) with reasonable accuracy.  Model results show that gravitational flux of 

sinking particles and vertical mixing of organic matter from the surface ocean are more important biological pump 

pathways than active transport by vertically migrating zooplankton.  However, these processes are regionally 

variable, with sinking particles most important in oligotrophic areas of the Gulf of Mexico and California, sinking 25 

particles and vertical mixing roughly equivalent in productive regions of the CCE and the subtropical front in the 

Southern Ocean, and active transport an important contributor in the Eastern Tropical Pacific.  We further find that 

mortality at depth is an important component of active transport when mesozooplankton biomasses are high, but that 

it is negligible in regions with low mesozooplankton biomass.  Our results also highlight the high degree of 

uncertainty, particularly amongst mesozooplankton functional groups, that is derived from uncertainty in model 30 

parameters, with important implications for results that rely on non-ensemble model outputs.  We also discuss the 

implications of our results for other data assimilation approaches.   
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1. INTRODUCTION 

Marine phytoplankton in the surface ocean are responsible for approximately half of the world’s photosynthesis 

(Field et al., 1998).  However, as a result of their short lifetimes and active grazing by a diverse suite of 35 

zooplankton, most of the carbon dioxide fixed by phytoplankton will be respired back into the surface ocean on a 

time scale of days to weeks (Steinberg and Landry, 2017).  Long-term sequestration of this biologically-fixed carbon 

dioxide requires that the organic matter produced by marine autotrophs be transported into the deep ocean through a 

suite of processes collectively referred to as the biological carbon pump (BCP) (Boyd et al., 2019; Ducklow et al., 

2001; Volk and Hoffert, 1985).  The BCP is estimated to transport 5 – 13 Pg C yr-1 into the deep ocean (Laws et al., 40 

2011; Laws et al., 2000; Siegel et al., 2014; Henson et al., 2011).  Our ability to constrain the magnitude of this 

globally important process (and its response to anthropogenic forcing) more accurately is hampered, however, by the 

diverse spatiotemporal scales over which these processes act and difficulties in quantifying rates in a heterogeneous 

three-dimensional ocean (Siegel et al., 2016; Burd et al., 2016; Boyd, 2015).   

Attempts to predict future changes in the BCP are also complicated by the diverse pathways of organic matter 45 

flux into the deep ocean.  Most research of the BCP has focused on sinking particles (Turner, 2015; Buesseler and 

Boyd, 2009; Martin et al., 1987; Honjo et al., 2008), which include diverse biologically-produced material such as 

dead phytoplankton and zooplankton, fecal pellets, crustacean molts, and mucous feeding structures (Smayda, 1970; 

Kirchner, 1995; Bruland and Silver, 1981; Fowler and Small, 1972; Small et al., 1979; Alldredge, 1976; Hansen et 

al., 1996; Lebrato et al., 2013).  Slowly-sinking and suspended particles are also reshaped into rapidly-sinking 50 

marine snow through abiotic aggregation processes (Passow et al., 1994; Burd and Jackson, 2009; Jackson, 2001; 

Alldredge, 1998).  These sinking particles are continually transformed, remineralized, and modified by a community 

of particle-attached bacteria and protists and suspension- and flux-feeding mesozooplankton (Stukel et al., 2019a; 

Poulsen and Kiorboe, 2005; Steinberg et al., 2008; Simon et al., 2002; Boeuf et al., 2019).   

Organic matter is also transported into the deep ocean through active transport by vertically-migrating 55 

zooplankton and nekton (Steinberg et al., 2000; Longhurst et al., 1990; Archibald et al., 2019; Bianchi et al., 2013a) 

and by passive transport of dissolved and particulate organic matter that is subducted by ocean currents or mixed 

into the deep ocean (Levy et al., 2013; Carlson et al., 1994).  The global magnitudes of these processes are highly 

uncertain because they are difficult to constrain from in situ measurements.  Active transport is commonly believed 

to be responsible for a relatively small proportion (~10-20%) of the biological pump (Archibald et al., 2019; 60 

Hannides et al., 2009; Steinberg et al., 2000).  However, if mortality at depth is included as part of active flux, it can 

be an important and at times dominant source of export, although such estimates are highly uncertain (Kelly et al., 

2019; Kiko et al., 2020; Hernández-León et al., 2019).  Similarly, investigations of the importance of passive 

transport initially focused on the role of refractory dissolved organic matter (Carlson et al., 1994; Copin-Montégut 

and Avril, 1993).  Recent studies, however, highlight the importance and spatiotemporal variability of passive 65 

transport of particles via subduction, eddy mixing, mixed layer shoaling, and vertical diffusion (Levy et al., 2013; 

Omand et al., 2015; Stukel et al., 2018b; Stukel and Ducklow, 2017; Resplandy et al., 2019).  These passive 

transport processes can be driven both by large-scale flows and by meso- and submesoscale circulation near fronts 

and eddies (Resplandy et al., 2019; Llort et al., 2018; Omand et al., 2015; Stukel et al., 2017). 
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Numerical models are essential tools for investigating such processes that act across multiple spatiotemporal 70 

scales and integrate multiple physical, chemical, and biological drivers.  Such models have, for instance, been 

crucial in elucidating spatial and temporal decoupling of phytoplankton production and sinking particle export 

(Plattner et al., 2005; Henson et al., 2015), determining the temporal horizon over which anthropogenic signals 

appear in the world ocean (Schlunegger et al., 2019), quantifying regional variability in subduction of organic matter 

(Levy et al., 2013), and predicting climate change impacts on plankton communities and the BCP (Dutkiewicz et al., 75 

2013; Hauck et al., 2015; Bopp et al., 2005; Oschlies et al., 2008; Yamamoto et al., 2018).  Models have also been 

used to investigate the role of vertically migrating zooplankton in strengthening oxygen minimum zones (Bianchi et 

al., 2013a), meso- and submesoscale hotspots of particle subduction (Resplandy et al., 2019), and the impact of 

glacial/interglacial changes in iron deposition on the BCP (Parekh et al., 2006).  Such investigations would be 

difficult or even impossible to undertake without models.  Nevertheless, the models for varying processes differ 80 

substantially, and few are able to thoroughly investigate the full potential parameter space or quantify the accuracy 

of simulated energy flows through multiple trophic levels.  While accurate simulation of physical circulation is 

critical for simulating marine biogeochemistry (Doney et al., 2004), objective parameterization of biogeochemical 

models lags substantially behind similar approaches for physics.  Indeed, the inability to constrain biogeochemical 

relationships accurately may be the primary limitation on our ability to objectively evaluate biogeochemical models 85 

(Anderson, 2005; Franks, 2009; Follows and Dutkiewicz, 2011; Ward et al., 2013).  Recent advances in formal 

assimilation of biogeochemical properties into ocean models are beginning to allow objective model 

parameterization, a crucial first step for treating models as testable hypotheses (Xiao and Friedrichs, 2014a; Mattern 

and Edwards, 2019; Kaufman et al., 2018; Ford et al., 2018; Kriest et al., 2017; Shen et al., 2016; Oschlies, 2006).  

Nevertheless, most of these approaches rely only on the assimilation of surface chlorophyll and/or other 90 

phytoplankton properties, thus leading to potentially high inaccuracies in parameterizing zooplankton dynamics 

(Shropshire et al., 2020; Löptien and Dietze, 2015).  This is particularly important, because inaccurate 

parameterizations of mesozooplankton may lead to qualitatively and quantitatively inaccurate export dynamics 

(Cavan et al., 2017; Anderson et al., 2013).  Accurate simulation of the BCP likely requires a focus on assimilation 

of data types crossing multiple trophic levels and both ecological and biogeochemical parameters. 95 

In this study, we modify an existing, widely used biogeochemical model (NEMURO, Kishi et al., 2007) to 

focus specifically on the multiple pathways of the biological carbon pump.  We refer to the new model as 

NEMUROBCP.  We have three distinct goals in creating NEMUROBCP.  The first is to mechanistically model the 

multiple BCP pathways (sinking particles, active transport by vertical migrants, and passive transport of organic 

matter by ocean circulation and mixing).  Our second goal is to enable direct comparability between model results 100 

and field measurements of standing stocks and rates.  This allows the model to act as a synthetic tool using diverse 

measured variables to enhance investigation of underlying and unmeasured processes (Dietze et al., 2013).  Our 

third goal is a model that can be run efficiently in multiple physical configurations to allow extensive data 

assimilation and hypothesis testing.  NEMUROBCP is designed with a “core” nitrogen-based module (including all 

biological components, nutrients, detritus, dissolved organic matter, and oxygen) that includes all three pathways of 105 

the BCP, along with submodules (that can be turned on or off) that model the carbon system, 234Th dynamics, and 

nitrogen isotopes.  Here, we perform a Markov Chain Monte Carlo statistical data assimilation to develop ensemble 

parameterizations of NEMUROBCP using 30 distinct types of field measurements from 49 Lagrangian experiments.  
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We then investigate the model’s ability to predict withheld measurements, conduct sensitivity analyses, and use the 

model to investigate the BCP in four ocean regions.   110 

2. METHODS 

2.1. Core NEMUROBCP model 

 NEMUROBCP was developed from the NEMURO class of models originally developed for the North Pacific 

(Kishi et al., 2011; Kishi et al., 2007; Yoshie et al., 2007) and includes several modifications adapted by Shropshire 

et al. (2020) that allow the model to be compared more directly to common field measurements.  It also includes 115 

three optional modules that can be toggled on and off (the carbon system, nitrogen isotopes, and 234Th).   

The core of NEMUROBCP is nitrogen-based and includes 19 state variables (Table 1): 3 nutrients (nitrate, 

ammonium, and silicic acid), 2 phytoplankton (small phytoplankton and diatoms), 5 zooplankton (protistan 

zooplankton, small non-vertically-migrating mesozooplankton, small vertically-migrating mesozooplankton, large 

non-vertically-migrating mesozooplankton, large vertically-migrating mesozooplankton), 2 dissolved organic pools 120 

(labile dissolved organic nitrogen and refractory dissolved organic nitrogen), 4 non-living particulate pools (small 

particulate nitrogen, large particulate nitrogen, small opal, and large opal), two chlorophyll state variables (one 

associated with small phytoplankton, the other with diatoms), and oxygen.  As in Shropshire et al. (2020), the small 

and large mesozooplankton are defined based on size (<1-mm and >1-mm, respectively) rather than trophic status to 

allow direct comparison to common size-fractionated measurements.  Relative to the original NEMURO model, key 125 

changes include: 1) An explicit chlorophyll module (based on Li et al., 2010) that allows direct comparison to in situ 

chlorophyll measurements and gut pigment measurements made with herbivorous zooplankton; 2) Division of 

dissolved organic matter into refractory and labile dissolved organic nitrogen to simulate subduction of refractory 

molecules; 3) Division of detrital pools into slowly and rapidly sinking particles to simulate more accurately the 

gravitational pump; 4) Division of mesozooplankton into epipelagic resident taxa and vertical migrants to simulate 130 

active transport by diel vertical migrators; and 5) Addition of a dissolved oxygen state variable that potentially limits 

heterotrophic growth in the mesopelagic ocean.  NEMUROBCP also modifies key transfer functions by, for instance, 

allowing protists to feed on diatoms, since protistan grazers are often important diatom grazers (e.g., Landry et al., 

2011).  The transfer functions linking state variables in NEMUROBCP are shown in Fig. 1 and explained in detail in 

the online supplement.  The 103 parameters in NEMUROBCP are explained in Supp. Table. S1. 135 

 Diel vertical migration is incorporated into NEMUROBCP via two alternate formulations.  The first formulation 

is designed for computational efficiency when the model is run in a euphotic zone only configuration 

(NEMUROBCP,EUPONLY).  In NEMUROBCP,EUPONLY diel vertically migrating taxa (LZDVM and PZDVM) only feed at 

night.  During the day, their mortality and respiration do not contribute to detritus and dissolved nutrient pools, but 

rather are treated as a loss of nitrogen from the model.  The second formulation includes a true diel vertical 140 

migration model based on the model of Bianchi et al. (2013a) for use when the model explicitly represents 

mesopelagic layers.  In this formulation (NEMUROBCP,DVM), vertically-migrating zooplankton swim towards a target 

depth with a swimming speed of 3 cm s-1 (with speed decreasing as zooplankton approach the target depth).  During 

the day, the target depth is defined as the depth of the 10-3 W m-2 isolume.  At night, the target depth is defined as 
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the mean depth of phytoplankton biomass.  NEMUROBCP,DVM also includes a biological diffusion term that ensures 145 

that LZDVM and PZDVM are dispersed around the target depth rather than accumulating within a single model layer. 

2.1.1.  Optional carbon system submodule  

The carbon system in NEMUROBCP includes dissolved inorganic carbon (DIC) and alkalinity as state variables.  

DIC is produced whenever there is net biological utilization of organic carbon and consumed whenever there is net 

biological production of organic carbon at fixed stoichiometric ratios of C:N = 106:16 (mol:mol).  Calculation of 150 

other carbon system parameters (pH and partial pressure of CO2) and air-sea CO2 gas exchange are calculated using 

procedures described in Follows et al. (2006).   

2.1.2. Optional 234Th submodule   

The 234Th submodule is based on the model of Resplandy et al. (2012).  It adds a dissolved 234Th state variable, 

as well as state variables associated with 234Th bound to each of the nitrogen-containing particulate state variables 155 

(i.e., each phytoplankton, zooplankton, and detritus state variable).  Dissolved 234Th is produced from the decay of 

238U (which is assumed to be proportional to salinity, Owens et al., 2011).  Dissolved 234Th adsorbs onto the 

aforementioned particulate pools following second-order rate kinetics.  Particulate 234Th is returned to the dissolved 

pool through both desorption and destruction of particulate matter.  234Th is also lost from the dissolved and 

particulate phases through radioactive decay.   160 

2.1.3. Optional 15N submodule  

The nitrogen isotopes submodule is based on the NEMURO+15N model of Stukel et al. (2018a) that was based 

on an earlier isotope model by Yoshikawa et al. (2005).   The 15N submodule adds an additional 13 state variables 

that simulate the concentration of 15N in each nitrogen-containing state variable (nitrate, ammonium, all 

phytoplankton and zooplankton groups, both detritus classes, and both dissolved organic nitrogen pools).  Isotopic 165 

fractionation occurs with most biological processes including nitrate uptake, ammonium uptake, exudation of 

organic matter by phytoplankton, excretion and egestion by zooplankton, remineralization of detritus and dissolved 

organic nitrogen, and nitrification.   

2.2. Physical framework for model simulations 

NEMUROBCP was developed so that it can be implemented in any physical framework.  In this study, we used a 170 

simple one-dimensional physical framework to simulate the water column associated with Lagrangian experiments 

from which we derived our field data (see below).  While this oversimplifies a system in which advection and 

diffusion play important roles in re-distributing biological and chemical properties, we believe it is a reasonable 

short-term approximation, especially because we are explicitly simulating results from in situ Lagrangian 

experiments.  In Lagrangian experiments, advection should play a reduced to negligible role in re-shaping plankton 175 

time-series, although we note that Lagrangian drifters (see below) explicitly track only the mixed layer, which may 

not be transported by the same currents as deeper layers.  The use of a one-dimensional model does, however, allow 

us to perform more than one million simulations for each of the 49 Lagrangian experiments, something that would 

not be possible with a three-dimensional model grid.   Our physical model framework simulates the euphotic zone 
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with variable vertical spacing that increases with depth, chosen to match sampling depths from the field programs.  180 

Vertical layers are centered at 2, 5, 8, 12, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 

and 160 m, although for each Lagrangian experiment we only include depths above the 0.1% light level.  We 

simulate vertical mixing as a simple diffusive process, with vertical eddy diffusivity coefficients varying with depth 

and estimated by Thorpe-scale analyses from field measurements (Gargett and Garner, 2008).  Initial and boundary 

conditions were determined from field measurements, although we sometimes had to estimate initial conditions from 185 

relationships with other measured parameters because all state variables were not measured for all experiments (e.g., 

if diatom biomass was not determined, we estimated it from a relationship between diatom biomass and total 

phytoplankton biomass).  We ran the model for 30-days with constant vertical diffusion rates.  30-days is an 

arbitrary length of time to run the model, but this time span was chosen for multiple reasons: 1) it is long enough to 

reduce sensitivity to initial conditions, 2) it is the longest period of time for which we would expect quasi-steady 190 

state conditions to be maintained in our study regions, 3) it allows sufficient time for parameter sets to potentially 

drive some taxa to near extinction (i.e., it allows time for unreasonable parameter sets to, for instance, lead to 

competitive dominance of small phytoplankton and drive diatoms to extinction).  We recognize that maintaining 

constant physical forcing introduces inaccuracy to our simulations and hence expect model-data mismatches, 

particularly during dynamic conditions (e.g., upwelling) when the system changes more rapidly.  Model outputs 195 

were evaluated on the 30th day of the model simulation.  Since we only simulate the euphotic zone, the model was 

run in NEMUROBCP,EUPONLY configuration. 

2.3. Field data 

Field data come from 49 short-term (~4-day) Lagrangian experiments conducted on 11 different cruises (Fig. 2) 

in the California Current Ecosystem (CCE) (Ohman et al., 2013), in the Costa Rica Dome (CRD) in the Eastern 200 

Tropical Pacific (Landry et al., 2016a), in the Gulf of Mexico (GoM) (Gerard et al., in review), and at the Chatham 

Rise near the subtropical front in the Southern Ocean (Décima et al., in review).  On these cruises a consistent 

sampling strategy involved utilization of an in situ incubation array with satellite-enabled surface drifter and 1×3-m 

“holey-sock” drogue centered at 15-m depth in the mixed layer (Landry et al., 2009).  Samples for rate measurement 

experiments (see below) were incubated in polycarbonate bottles placed in mesh bags at 6 – 8 depths spanning the 205 

euphotic zone on the incubation array (Landry et al., 2009).  On 10 of the cruises, an identically-drogued sediment 

trap array was deployed to capture sinking particles (Stukel et al., 2015).   

We assimilated a broad suite of standing stock and rate measurements across multiple trophic levels that 

included: 466 measurements of NO3
- concentration and 423 measurements of NH4

+ concentration (Knapp et al., 

2021); 422 measurements each of silicic acid and 84 measurements of biogenic silica (Krause et al., 2016; Krause et 210 

al., 2015); 455 chlorophyll a measurements (Goericke, 2011); 193 measurements of small phytoplankton biomass by 

a combination of epifluorescence microscopy and flow cytometry (Taylor et al., 2012; Selph et al., 2021); 193 

measurements of diatom biomass by epifluorescence microscopy (Taylor et al., 2012; Taylor et al., 2016); 193 

measurements of protistan zooplankton biomass by epifluorescence microscopy and/or light microscopy of Lugol’s 

stained samples (Freibott et al., 2016); 44 measurements each of vertically-integrated <1- and >1-mm epipelagic-215 

resident mesozooplankton biomass; 43 measurements each of vertically-integrated <1- and >1-mm diel-vertically-

migrating mesozooplankton biomass; 413 measurements of particulate organic nitrogen and 28 measurements of 

dissolved organic nitrogen (Stephens et al., 2018); 342 measurements of net primary productivity by either H13CO3
- 
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or H14CO3
- uptake methods (Morrow et al., 2018; Yingling et al., 2021); 149 measurements of nitrate uptake by 

incorporation of 15NO3
- (Kranz et al., 2020; Stukel et al., 2016); 50 measurements of silicic acid uptake by 220 

incorporation of 32Si (Krause et al., 2015); 248 measurements each of whole phytoplankton community growth rates 

and whole phytoplankton community mortality rates due to protistan grazing determined by chlorophyll analyses of 

microzooplankton dilution experiments (Landry et al., 2009; Landry et al., 2021); 53 measurements each of small 

phytoplankton growth rates and small phytoplankton mortality rates due to protistan grazing determined by high-

pressure liquid chromatography pigment analyses of microzooplankton dilution experiments combined with flow 225 

cytometry and epifluorescence microscopy (Landry et al., 2016b; Landry et al., 2021); 53 measurements each of 

diatom growth rates and diatom mortality rates due to protistan grazing determined by high-pressure liquid 

chromatography pigment analyses of microzooplankton dilution experiments combined with flow cytometry and 

epifluorescence microscopy (Landry et al., 2016b; Landry et al., 2021); 41 measurements each of vertically-

integrated <1-mm and >1-mm nighttime mesozooplankton grazing rates by the gut pigment method (Décima et al., 230 

2016; Landry and Swalethorp, 2021); 41 measurements each of vertically-integrated <1-mm and >1-mm daytime 

mesozooplankton grazing rates by the gut pigment method (Décima et al., 2016; Landry and Swalethorp, 2021); 37 

measurements of sinking nitrogen using sediment traps (Stukel et al., 2019b; Stukel et al., 2021); 19 measurements 

of sinking biogenic silica using sediment traps (Krause et al., 2016; Stukel et al., 2019b); and 475 measurements of 

photosynthetically-active radiation.  Each of the above measurements was typically the mean of measurements taken 235 

at a specific depth (or vertically-integrated) on multiple days of the Lagrangian experiment, thus allowing us to also 

quantify uncertainties for all measurements.  Each of the above measurements also directly maps onto a specific 

standing stock or process in the model enabling direct model-data comparisons.  Field data are listed in Supp. Tables 

S2 – S4.   

2.4. Data assimilation and objective model parameterization approach 240 

 Using the available datasets described above, our goal was to develop an automated and objective model 

parameterization method that would allow us to generate an ensemble of parameter sets for hypothesis testing or as 

prior distributions in future data assimilation studies.  We refer to this approach as objective ensemble 

parameterization with Markov Chain Monte Carlo (OEPMCMC).  We began by log-transforming most field 

measurements to normalize the data (some measurements, e.g. growth rates that can be positive or negative, were 245 

not transformed).  We then defined a cost function: 

𝐽(𝑝) =
1

∑ √𝑁𝐿𝐸,𝑖

∑
√𝑁𝐿𝐸,𝑖

𝑁𝐷𝑇,𝑖

∑
1

𝑁𝑂,𝑖,𝑗

∑ (
𝑒𝑟𝑟𝑜𝑟𝑖,𝑗,𝑘

𝑢𝑛𝑐𝑖,𝑗,𝑘

)

2
𝑁𝑂,𝑖,𝑗

𝑘=1

𝑁𝐷𝑇,𝑖

𝑗=1

𝑁𝑠𝑖𝑡𝑒𝑠

𝑖=1

 

where Nsites was the number of different sampling locations (i.e., 4 = CCE, CRD, GoM, and Chatham Rise), NLE,i 

was the number of Lagrangian experiments conducted at location i,  NDT,i was the number of data types that were 

measured at site i, NM,i,j was the number of distinct observations of data type j at location i, and: 250 

𝑒𝑟𝑟𝑜𝑟𝑖,𝑗,𝑘 =
𝑚𝑜𝑑𝑒𝑙𝑖,𝑗,𝑘 − 𝑜𝑏𝑠𝑖,𝑗,𝑘    if  𝑚𝑜𝑑𝑒𝑙𝑖,𝑗,𝑘 > 𝑑𝑒𝑡𝑙𝑖𝑚𝑖,𝑗,𝑘   or  𝑜𝑏𝑠𝑖,𝑗,𝑘 > 𝑑𝑒𝑡𝑙𝑖𝑚𝑖,𝑗  

                   0                    if  𝑚𝑜𝑑𝑒𝑙𝑖,𝑗,𝑘 < 𝑑𝑒𝑡𝑙𝑖𝑚𝑖,𝑗,𝑘   and  𝑜𝑏𝑠𝑖,𝑗,𝑘 < 𝑑𝑒𝑡𝑙𝑖𝑚𝑖,𝑗
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where modeli,j,k is the model result corresponding to observation obsi,j,k, and detlimi,j,k is the detection limit for data 

type j.  This is equivalent to stating that there is no model data discrepancy if both the observation and the 

corresponding model result are below the experimental detection limit.  Observational uncertainty was defined as: 

𝑢𝑛𝑐𝑖,𝑗,𝑘 = max (
𝜎𝑖,𝑗,𝑘

√𝑁𝑆,𝑖,𝑗,𝑘

, 𝐸𝑥𝑝𝑈𝑛𝑐𝑖,𝑗,𝑘) 255 

where σi,j,k is the standard deviation of multiple samples taken for the distinct observation k of data type j at location 

i (i.e., σi,j,k is the standard deviation of multiple measurements taken at the same depth over the course of a 

Lagrangian experiment), NS,i,j,k is the number of samples associated with observation k of data type j at location i, 

and ExpUnci,j,k is the experimental uncertainty (e.g., instrument accuracy) of observation k of data type j at location 

i.  We chose to use the maximum of these two terms because, in most cases, the standard error of repeated 260 

measurements was greater than experimental uncertainty (and inherently incorporates experimental uncertainty).  

However, in some cases (e.g., if three measurements of nitrate at 12 m depth on a particular Lagrangian experiment 

reported the same value), the standard error of the measurements was an unrealistically low estimate of true 

uncertainty. 

 The cost function, J(p), gives equal weight to all measurement types within a specific Lagrangian experiment 265 

(e.g., if a Lagrangian experiment has 10 measurements of sinking nitrogen flux and 100 measurements of 

chlorophyll, J(p) gives each of those measurement types equal weight).  It also gives different locations a weight 

proportional to the square root of the number of Lagrangian experiments at that site.  That decision was made so that 

a more heavily sampled region (i.e., CCE) can provide more constraint to the model, while preventing that region 

from overwhelming the model results.  We note that this is a comparatively weak cost function (relative to, for 270 

instance, likelihood), because it normalizes to the number of measurements.  We chose a weak cost function, 

because it reflects the fact that uncertainty in initial conditions and physical forcing introduces model data misfit that 

is unassociated with parameter choice. 

 To investigate the parameter space, we performed a Markov Chain Monte Carlo search (Metropolis et al., 

1953).  We first defined allowable ranges for all parameter values based on laboratory and field experiments, 275 

combined with results from prior model simulations (Supp. Table S1).  These allowable ranges were defined to be 

broad and often spanned several orders of magnitude for a particular parameter.  We then defined an initial guess for 

each parameter based primarily on values used in other NEMURO models (Kishi et al., 2007; Shropshire et al., 

2020; Yoshie et al., 2007). We first ran 30-day simulations for all 49 Lagrangian experiments using the initial 

parameter values and calculated the cost function based on J(p1).  We then perturbed the parameter set by adding to 280 

each parameter a random number drawn from a normal distribution with mean of 0 and standard deviation equal to a 

jump length of 0.02 times the width of the allowable range for that parameter.  When newly selected values fell 

outside the allowable range, we mirrored them across the boundary.  For many of the variables expected to follow a 

log-normal distribution (e.g., phytoplankton half-saturation constants), we log-transformed prior to the MCMC 

search.  We then re-ran the 30-day model for all Lagrangian experiments and calculated a new cost associated with 285 

this parameter set, J(p2).  We chose whether or not to accept this parameter set based on the relative cost functions of 

J(p1) and J(p2).  If J(p2) was less than J(p1) we automatically accepted the new parameter set as a viable solution.  If 

J(p2) was greater than J(p1), we accepted it with probability: 

https://doi.org/10.5194/bg-2022-7
Preprint. Discussion started: 7 February 2022
c© Author(s) 2022. CC BY 4.0 License.



 9 

𝑝𝑟𝑜𝑏 = 𝑒0.5×(𝐽(𝑝𝑛)−𝐽(𝑝𝑛+1)) 

We walked through the parameter solution space for a total of 1.1 million iterations (discarding the first 100,000 290 

iterations as a “burn-in” period before the cost function stabilized at a relatively low value).  In this way, we 

explored the correlated uncertainty in all parameters of the core model, except the temperature sensitivity 

coefficient.  We chose not to vary the temperature sensitivity coefficient (TLIM), because it is fairly well-

constrained from experimental measurements and most model rates were directly correlated to TLIM; hence 

changes in TLIM lead to commensurate changes in so many other rate parameters that allowing it to vary would 295 

have made calculation of mean values of other parameters (e.g., maximum growth or grazing rates) almost 

meaningless. 

 We also saved model results associated with the BCP (e.g., sinking particle flux, net primary production, 

subduction rates, active transport) for the model simulations associated with each parameter set.   

3. RESULTS  300 

3.1. Objective model parameterization  

In our Markov Chain Monte Carlo (MCMC) exploration of the solution space, the cost function evaluated at our 

initial guess was 972.  Over the first ~100,000 iterations of the MCMC procedure, the cost function declined to 

approximately 100 and remained near this value for the remainder of the MCMC procedure (1 million additional 

simulations).  We thus considered the first 100,000 iterations to be a “burn-in” period, and all results are based on 305 

the subsequent 1,000,000 solution sets.  For this analysis set, the mean cost function was 98.2 with 95% confidence 

interval = 83.8 – 115.3.  For comparison, we also conducted an undirected MCMC exploration of the solution space 

(i.e., every solution was accepted regardless of relative change in cost function) that yielded a mean cost function of 

3197 (C.I. = 1270 – 5657) after the burn-in period, with a minimum value of 740 (across the 1,000,000 simulations).  

The OEPMCMC procedure thus determined a set of 1,000,000 solutions for which the cost function was substantially 310 

reduced relative to either our initial parameter guess or a random sample of the solution space.   

We investigated the 1,000,000 OEPMCMC solution sets to determine which parameters were well or poorly 

constrained by the data (Supp. Tables S1 and S2).  We focus here on how well the field observations allowed the 

OEPMCMC approach to constrain the parameters relative to prior estimates of allowable ranges.  This is distinct from 

the question of which parameters are most well constrained because some parameters were well known from prior 315 

knowledge (e.g., phytoplankton maximum growth rates) while others are poorly known (e.g., phytoplankton half-

saturation constants).  Some parameters were very well constrained by the data.  Ten of the 101 variables were 

constrained to within 10% of their allowed range (for log-transformed variables, 10% of their log-transformed 

parameter space).  Six of the 10 well-constrained variables were associated with phytoplankton bottom-up forcing, 

while only two parameters associated with zooplankton were well constrained by the data (the Ivlev constants for 320 

protistan grazing on small and large phytoplankton).  The most well-constrained parameter was the ammonium half-

saturation constant for small phytoplankton which was assumed to vary from 0.001 – 1 mmol NH4
+ m-3 and was 

constrained by the OEPMCMC procedure to a 95% C.I. of 0.0011 - 0.0065 mmol NH4
+ m-3.  For metazoan 

zooplankton, all parameters except Ivlev constants had 95% C.I.s that spanned >60% of the allowable range, and 

many exceeded 90% of the allowable range.  Overall, 25 parameters had 95% C.I.s that spanned >60% of the 325 
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allowable range, suggesting that those parameters were more strongly constrained by our prior estimates than by the 

field data (Supp. Table S1).   

Next, we highlight analyses of bottom-up forcing on small phytoplankton (Fig. 3) and correlation of large 

phytoplankton (i.e., diatoms) bottom-up forcing with other model dynamics (Fig. 4) as examples of typical patterns 

of correlation among parameters.  Small phytoplankton parameters were generally well-constrained by the extensive 330 

datasets of phytoplankton growth rates, net primary production, and phytoplankton biomass (as assessed 

microscopically and/or by chlorophyll analyses).  For instance, although we allowed the maximum growth rate of 

small phytoplankton (Vmax,SP) to vary from 0.1 to 1 d-1, the OEPMCMC procedure constrained Vmax,SP to 0.22 to 0.64 

(at the 95% C.I.).  The least well constrained parameter related to small phytoplankton growth was the half-

saturation constant for nitrate uptake, which varied from 0.011 to 1.3 mmol N m-3.  Several of these phytoplankton 335 

parameters were also correlated in predictable manners.  For instance, Vmax,SP was negatively correlated with the 

initial-slope of the photosynthesis-irradiance curve (αSP, correlation coefficient (ρ) = -0.15), because increased 

maximum growth rates and stronger light dependence (i.e., a slower rate of increase in photosynthesis with 

increasing light) offset each other to maintain similar realized growth rates under typical light-limited conditions.  

Vmax,SP was also positively correlated with the mortality rate (mortSP, ρ=0.25), because commensurate changes in 340 

Vmax,SP and mortSP maintain similar net growth rates for small phytoplankton. 

Parameters associated with large phytoplankton were typically less well-constrained, although they did differ 

from parameters associated with small phytoplankton in several predictable ways.  For instance, the maximum 

growth rate of large phytoplankton (Vmax,LP, mean = 0.72 d-1, 95% C.I. was 0.43 – 0.99 d-1) was greater than the 

maximum growth rate of small phytoplankton (mean = 0.37 d-1, 95% C.I. was 0.22 – 0.64 d-1) despite the fact that 345 

we used identical allowable ranges of 0.1 – 1 d-1.   The half-saturation rate for large phytoplankton uptake of nitrate 

(KNO,LP = 1.6 mmol N m-3) was also substantially greater than KNO,SP (0.25 mmol N m-3), although their half-

saturation constants for ammonium uptake were similar.  Unsurprisingly, the maximum growth rate of large 

phytoplankton was strongly correlated with the maximum growth rate of protistan zooplankton on large 

phytoplankton (gmax,SZ,LP, ρ=0.35), because grazing by protistan zooplankton is often the dominant source of 350 

mortality for all phytoplankton (including diatoms).  More surprisingly, Vmax,LP had an even stronger correlation 

with the maximum grazing rate of epipelagic-resident large (>1-mm) mesozooplankton on small phytoplankton 

(gmax,PZRES,SP, ρ = 0.43).  We believe that this arises from a correlation between large mesozooplankton standing 

stock and gmax,PZRES,SP.  Since small phytoplankton are often the most abundant potential prey item, higher 

gmax,PZRES,SP values allow large mesozooplankton (which preferentially graze large phytoplankton) to sustain higher 355 

biomass and prevent large phytoplankton from escaping grazing pressure, thus requiring a higher maximum growth 

rate to maintain their biomass.   

Some correlations were unexpected.  For instance, the initial slope of the photosynthesis-irradiance curve (αLP) 

was positively correlated with the remineralization rate of labile dissolved organic nitrogen to NH4
+ (refdec,DON,NH, 

ρ=0.31).  Both of these parameters were strongly constrained by the OEPMCMC procedure (αLP had an allowable prior 360 

range of 0.001 – 0.04 m2 W-1 d-1 but had a posterior 95% C.I. of 0.008 – 0.03 m2 W-1 d-1; refdec,DON,NH had an 

allowable range of 0.005 – 0.3 d-1 but a 95% C.I. of 0.005 – 0.01 d-1).  It is not clear why these parameters would be 

correlated, although it is likely related to the relative realized growth rates of large phytoplankton in the upper and 

lower euphotic zone.  High values of αLP would promote higher realized growth rates in the deep euphotic zone; 
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high values of refdec,DON,NH would lead to higher realized growth rates in the nutrient-limited upper euphotic zone.  365 

The Ikeda parameter for small mesozooplankton (IkLZ, d-1), which sets the basal respiration of small (<1-mm) 

mesozooplankton was positively correlated with Vmax,LP (ρ = 0.12), KNH,LP (ρ = 0.16), and αLP (ρ = 0.29).  While the 

first and third correlations are not surprising (both lead to increased large phytoplankton growth which would 

support higher mesozooplankton respiration), it is surprising that IkLZ would be correlated with KNH,LP since higher 

half-saturation constants lead to lower realized phytoplankton growth rates.  Vmax,LP was also negatively correlated 370 

with the daytime mortality rate of small (<1-mm) vertically-migrating mesozooplankton at their mesopelagic resting 

depth (mortday,LZDVM, ρ = -0.35), which is opposite to what would be expected if large phytoplankton growth was 

necessary to support mesozooplankton mortality, but may reflect an indirect effect of intraguild competition between 

small mesozooplankton and protistan grazers (mortday,LZDVM was also negatively correlated with the Ivlev constant 

for small mesozooplankton grazing on protistan zooplankton (IvLZDVM,SZ, ρ = -0.27) which would indicate that 375 

mesozooplankton increases when their feeding rate on protists increases).   

While these are only a subset of the multiple correlations, they highlight the complex, and often 

counterintuitive, relationships among many parameters.  This analysis also clearly elucidates the importance of joint 

parameter sensitivity analyses.  For instance, when model sensitivity to maximum large vertically-migrating 

mesozooplankton grazing rates on small phytoplankton (gmax,PZRES,SP) was investigated with a maximum large 380 

phytoplankton growth rate (Vmax,LP) of ~0.6 d-1, the analysis suggested that the model was only weakly sensitive to 

gmaxPZRES,SP, and that the optimal value was near 0.03 d-1.  However, when the same analysis was conducted with 

Vmax,LP = ~1.0, the model was very sensitive to gmaxPZRES,SP, and the optimal value was 0.1 – 0.2 d-1.   

3.2. Model data comparison (assimilated data)  

To determine whether the model was able to simulate assimilated measurements accurately, we compared 385 

model-data results with respect to two key processes related to export: net primary production and sinking particle 

flux (Figs. 5 and 6, respectively).  For most Lagrangian experiments, the model 95% confidence interval bracketed 

the mean of the observed net primary production (Fig. 5).  However, the model substantially underestimated net 

primary productivity for several experiments in the CCE (e.g., 605-1, 605-3, 704-4, 810-5, and 1604-4) conducted in 

near-coastal regions with recently upwelled high-nitrate water.  The model-data discrepancy thus likely results from 390 

our assumption of a one-dimensional system with constant physics for 30-days.  In reality, these Lagrangian 

experiments were heavily influenced by coastal upwelling processes missing in our one-dimensional model and 

experienced markedly non-linear dynamics as the water parcels were advected away from the upwelling source and 

nutrients drawn down over time (e.g., Landry et al., 2009).  Contemporaneous nutrient input from directly below 

these water parcels was thus likely not the source of nitrogen supporting high production, as is assumed by our one-395 

dimensional physical framework.  In less dynamic regions (e.g., GoM), the model more faithfully simulated 

phytoplankton production. 

The model did a reasonable job simulating sinking particle export flux from the euphotic zone (Fig. 6).  For the 

majority of experiments, observed export fell within the 95% confidence interval of the model simulations.  

However, the simulated export flux range was quite substantial for most cycles.  Indeed, the 95% confidence 400 

intervals for export flux at single locations using the 1,000,000 MCMC solutions were at times as large as the 

confidence interval for mean observed flux across the 49 different Lagrangian experiments.  This suggests that 
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uncertainty in parameter estimation for the model is as important a source of error for export flux as variability 

between regions and seasons.  The only region for which the model produced a stark bias in export flux relative to 

the observations was the CRD, where the model consistently overestimated export flux.  This is not surprising for 405 

this region, because the CRD is dominated by Synechococcus, which contribute substantially less to export flux than 

larger phytoplankton (Saito et al., 2005; Stukel et al., 2013).  In other regions, model underestimates of export flux 

were typically more notable than model overestimates (observations were seldom less than the lower bound of the 

model’s 95% confidence interval).   

3.3. Model data comparison (unassimilated data)  410 

To assess the model’s ability to simulate state variables and processes not included in the assimilation dataset, 

we utilized the thorium sorption and nitrogen isotope submodules and compared model results to measured total 

water column 234Th (Fig. 7), the C:234Th ratio of sinking particles (Fig. 8a), and the δ15N of sinking particles (Fig. 

8b).  NEMUROBCP accurately simulated many properties of 234Th dynamics found in the field data.  For instance, it 

did a reasonable job of estimating the shape and magnitude of vertical profiles, notably simulating low 234Th activity 415 

in surface waters and 234Th activity close to equilibrium with 238U in deeper waters.  The model also captured some 

key aspects of inter- and intra-regional variability in 234Th activity, including much lower 234Th activity in coastal 

regions of the CCE (e.g., Fig. 7a, c, ah) relative to offshore regions (e.g., Fig. 7e, ad, ae).  The model also accurately 

estimated the consistently high 234Th activity found in the GoM.  The greatest model-data mismatch with respect to 

234Th activity was found in the CRD (Fig. 7ai – am).  In this region, the model was fairly accurate at predicting 420 

mixed layer 234Th activity, but the model consistently underestimated 234Th activity in the deep euphotic zone.  The 

model was also reasonably effective at predicting the C:234Th ratio of sinking particles.  The model both accurately 

estimated the mean value of sinking particle C:234Th ratios (median observation = 7.2 µmol C dpm-1; median model 

value for locations paired with observations = 7.7 µmol C dpm-1) and the range of C:234Th values (observation = 2.2 

– 20.5 µmol C dpm-1; model = 4.1 – 30.0 µmol C dpm-1).  For most simulations, the modeled and observed C:234Th 425 

ratios also showed very good agreement (Fig. 8a).  However, the model consistently overestimated the C:234Th ratio 

of sinking particles in the CRD, a region where the model was particularly poorly constrained and predicted a wide 

range of C:234Th ratios.  The model also substantially underestimated the C:234Th ratio for several sediment trap 

collections in the GoM.  Nevertheless, the overall model-data agreement with respect to 234Th dynamics is 

reassuring, especially since key parameters (e.g., thorium sorption and desorption coefficients) were not estimated 430 

by the OEPMCMC procedure but instead were taken directly from the literature. 

The model was also able to accurately simulate the δ15N of sinking particles, albeit with a more limited set of 

observations available (note that we did not simulate nitrogen isotopes for Lagrangian experiments from the 

SalpPOOP cruise, because the δ15N of deepwater nitrate, an important boundary value, was unknown in this region).  

The median observed δ15N of sinking particles was 4.6 compared to a model estimate of 6.1, while the observed 435 

range was 1.7 – 14.3 and the modeled range was 1.8 – 9.3 (Fig. 8b).  The only simulation for which there was a 

substantial mismatch between model result and observation was from a single experiment in the CRD in which there 

is substantial uncertainty in the observed δ15N because one sediment trap replicate had a very high δ15N value, while 

the other two replicates had values near the simulated value. 

3.4. Sensitivity analysis  440 

https://doi.org/10.5194/bg-2022-7
Preprint. Discussion started: 7 February 2022
c© Author(s) 2022. CC BY 4.0 License.



 13 

 The OEPMCMC approach allowed us to investigate uncertainty associated with all three pathways of the BCP 

(see the next two sections).  First, we focus specifically on variability in model estimates of gravitational flux, as 

these can be directly compared to field measurements.  When comparing modeled gravitational flux for different 

Lagrangian cycles, the median coefficient of variation (standard deviation / mean) was 0.49, with a range of 0.29 – 

1.38.  This represents substantial uncertainty in sinking particle flux due solely to different potential parameter 445 

choices (Fig. 6).  For instance, on the fifth Chatham Rise Lagrangian experiment (which was the experiment with 

coefficient of variation closest to the median), the mean model predicted gravitational flux was 1.24 mmol N m-2 d-1 

with a standard deviation of 0.62 mmol N m-2 d-1 and a 95% confidence interval from 0.29 to 2.6 mmol N m-2 d-1.  

This shows that for a typical cycle, there was nearly an order of magnitude variability in export flux based solely on 

uncertainty in model parameterization.  For comparison, across the 49 Lagrangian experiments for which we have 450 

sediment trap deployments near the base of the euphotic zone, the field observations of gravitational flux at the base 

of the euphotic zone ranged from 0.22 – 6.3 mmol N m-2 d-1.  Thus, for a typical Lagrangian experiment, uncertainty 

in model parameterization introduced slightly less uncertainty in gravitational flux than variability across the 

multiple regions.  For the fourth GoM Lagrangian experiment (the experiment with the highest coefficient of 

variation), the mean model predicted gravitational flux was 0.23 mmol N m-2 d-1 with a standard deviation of 0.31 455 

and a 95% confidence interval from 0.0069 – 1.07 mmol N m-2 d-1.  For this particular cycle, some likely parameter 

sets predicted gravitational flux nearly equal to the mean measured gravitational flux across the diverse regions we 

studied, while other likely parameter sets predicted export more than an order of magnitude lower than the lowest 

observed flux.  This high degree of uncertainty should be considered when results of a single model simulation are 

considered and provide a strong argument for the importance of ensemble modeling.    460 

To investigate the relationships among uncertainties in the three pathways of the BCP and uncertainties in 

parameters, we computed the R2 of ordinary least squares linear regressions of each BCP pathway as a function of 

each parameter.  This approach allows us to quantify the percentage of variability in the export pathway explained 

by a linear relationship with a specific parameter.  This is distinctly different from some traditional sensitivity 

analysis approaches that either compute the derivative of a model output with respect to different parameters or vary 465 

parameters by a fixed amount (e.g., ±10%).  Unlike those approaches, our R2 approach explicitly accounts for the 

certainty with which different parameters are constrained.  For instance, a model may be very sensitive to the 

maximum growth rate of diatoms; however, if that parameter is well constrained by laboratory experiments, field 

data, and/or data assimilation, then parameter uncertainty may not be the dominant source of uncertainty in model 

results.  Our approach is thus well suited to determining which parameters especially merit future experimental 470 

focus. 

 Our results show that the R2 values for BCP pathways regressed against most parameters were ~0.01 or less.  

However, some of the parameters were able to explain 10% of the variability in specific BCP pathways.  For 

instance, the linear mortality parameter for protistan zooplankton (mortSZ) explained 15% of the variability in 

gravitational particle export (positive correlation) and 18% of the variability in export due to vertical mixing 475 

(negative correlation).  These correlations reflect the importance of protistan zooplankton in controlling 

phytoplankton populations without producing rapidly sinking particles.  Multiple parameters had similar inverse 

correlations with gravitational particle export and export due to vertical mixing.  For example, the assimilation 

efficiency of small epipelagic-resident mesozooplankton, the Ivlev constant for large mesozooplankton feeding on 

small mesozooplankton, and the sinking speed of fast-sinking detritus all had positive correlations with gravitational 480 
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flux; the maximum grazing rate of small epipelagic-resident mesozooplankton on protistan zooplankton, and the 

remineralization rate of fast-sinking detritus had negative correlations with gravitational flux.  The remineralization 

rate of fast-sinking detritus explained the highest proportion of variability in gravitational flux (45%).  Only two 

parameters (the maximum grazing rate of large vertically migrating mesozooplankton on small mesozooplankton 

and the Ivlev constant for large mesozooplankton feeding on small protists) explained >10% of the variability in 485 

active transport (19% and 18%, respectively, with both positively correlated with active transport).  Notably, none of 

the parameters most responsible for uncertainty in the BCP were related to phytoplankton bottom-up limitation.  We 

do not believe that this reflects a lack of importance of bottom-up processes in the BCP.  Rather, this reflects a much 

greater uncertainty in parameterizations for zooplankton and non-living organic matter, combined with the 

importance of these processes to the BCP (Cavan et al., 2017; Anderson et al., 2013). 490 

 As mentioned previously, two of the most important parameters for determining gravitational flux are the 

sinking speed (Lsink) and remineralization rate of fast-sinking particles to DON (refdec,LPON,DON).  Notably, these two 

parameters are strongly related to the remineralization length scale for these particles 

(RLS=Lsink/(refdec,LPON,DON+refdec,LPON,NH4)).  We illustrate the impact of variability in RLS on model gravitational 

flux by focusing on two Lagrangian experiments representative of the CRD (CRD-1) and upwelling-influenced 495 

regions of the CCE (1604-3).  RLS was strongly correlated with gravitational flux for each experiment (Pearson’s ρ 

= 0.62 for both experiments, p<<10-7).  The relationship was not perfectly linear, however (Supp. Fig. S1a,b).  

Particularly for the CRD experiment, but also for the CCE experiment, there was a threshold effect such that RLS 

was only weakly correlated with gravitational flux at RLS > ~150 m.  This resulted from higher RLS values leading 

to decreased recycling in the system and hence reduced primary production.  Comparison of the probability density 500 

functions for RLS determined by the OEPMCMC procedure with probability density functions for only those 

parameter sets that accurately predicted gravitational flux for these cycles (to ±1 standard deviation of the observed 

value) show that gravitational flux was more accurately predicted for the CCE experiment with RLS values slightly 

higher than the overall average of the whole dataset (median for the entire dataset was 85 m; median for parameter 

sets that accurately predicted export for this cycle was 115 m, Supp. Fig. S1c), while it was more accurately 505 

predicted for the CRD experiment with RLS values lower than the average for the dataset (median RLS for accurate 

parameter sets = 57 m, Supp. Fig. S1d).  This highlights the sensitivity of the model to these parameters while 

suggesting differences in remineralization length scale between these specific regions, although we caution that RLS 

calculated above is only for fast-sinking detritus and does not account for the additional gravitational flux mediated 

by slowly sinking particles.   510 

3.5. Model results: Three pathways of export  

 We compared the relative magnitude of the three BCP pathways for all Lagrangian cycles and all OEPMCMC 

parameter sets (Fig. 9a).  Results showed that export was typically dominated by some combination of gravitational 

and/or mixing flux.  Active transport typically contributed a relatively small proportion of export from the base of 

the euphotic zone (mean = 2.8%, 95% C.I. = 0.02% - 16.5%).  Across the dataset, gravitational flux was the 515 

dominant export pathway (mean = 56.1%, 7.1% - 99.6%), although mixing was also an important source of export 

(mean = 41.1%, 0% - 92.3%).  The large confidence intervals for each of these fluxes highlight the uncertainty in 

our estimates of the BCP pathways.  They also, however, obscure distinct regional variability among the 

experiments analyzed in our study.   
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 During upwelling-influenced experiments in the CCE, mixing and gravitational flux often contributed 520 

approximately equally to the BCP, with different parameter sets suggesting either dominance by mixing or 

gravitational flux.  For instance, during CCE cycle 1604-3 (Fig. 9b) gravitational flux contributed an average of 61% 

(29 – 84%) of export, while mixing was responsible for 35% (12 – 67%).  Not every CCE coastal cycle had a 

relatively even split, however, with some more dominated by sinking flux and others more dominated by mixing 

flux (e,g. CCE cycle 0605-3 which occurred during a dense coastal dinoflagellate bloom, Fig. 9g).  In oligotrophic 525 

regions of the CCE and GoM, export was typically dominated by sinking flux, with relatively minor contributions 

from both mixing and active transport.  For instance, during CCE cycle 1408-5 gravitational flux was responsible for 

86% (70 – 97%) of export (Fig. 9c), while during GoM cycle 5 sinking was responsible for 89% (66 – 98%) of 

export (Fig. 9e).  During CRD experiments, which had relatively high mesozooplankton biomasses relative to 

phytoplankton biomass, active transport was comparatively more important.  For instance, during CRD cycle 1, 530 

active transport averaged 6.5% (0.7 – 26%) of export and was more important than mixing flux (4.3%, 0.4 – 12%, 

Fig. 9d).  During the Chatham Rise experiments in the Southern Ocean, export patterns were comparable to those in 

the upwelling-influenced CCE, driven primarily by gravitational flux and mixing, with gravitational flux slightly 

more important.   

 Looking at patterns across regions and across the varying conditions on our Lagrangian experiments, the 535 

proportion of export driven by vertical mixing was correlated with vertical eddy diffusivity at the base of the 

euphotic zone (Spearman’s ρ = 0.64, p<10-6).  This is not surprising, since vertical diffusion drives particulate and 

dissolved organic matter flux across the euphotic zone.  Because sinking and vertical mixing were the two dominant 

mechanisms of export, vertical eddy diffusivity also showed a strong inverse correlation with gravitational flux 

(Spearman’s ρ = -0.64, p<10-6).  Across all simulations, organic matter mixed out of the euphotic zone was 540 

relatively evenly split between DOM and POM, but variability in POM flux was greater (mean = 3.4 ± 6.9 mmol N 

m-2 d-1) than variability in DOM (mean = 4.6 ± 5.5 mmol N m-2 d-1).  For most simulations (72%), DOM mixing flux 

exceeded POM mixing flux.  However, POM mixing was greater for 66% of the simulations with total mixing flux 

>20 mmol N m-2 d-1.  Flux of fast-sinking particles exceeded that of slow-sinking particles at the euphotic zone base 

for 90.5% of simulations, with fast-sinking particles averaging of 2.3 mmol N m-2 d-1 (0.07 – 10.4 mmol N m-2 d-1) 545 

and slow-sinking particles averaging 0.35 mmol N m-2 d-1 (0.02 – 1.4 mmol N m-2 d-1).   

3.6. Model results: Diel vertical migration and active transport 

   In NEMUROBCP, active transport is driven by two processes: respiration/excretion and mortality at depth.  The 

former is parameterized as a temperature- and size-dependent function representing basal respiration and is 

comparatively well constrained by prior experimental work.  The latter is parameterized as a density-dependent 550 

function representing predator-induced mortality, a process that is highly uncertain because few studies have 

quantified zooplankton mortality in the mesopelagic ocean.  We fit linear regressions to log-transformed active 

transport plotted against log-transformed mesozooplankton biomass (Fig. 10a) to determine a power law relationship 

predicting active transport from mesozooplankton biomass: AT = aBc, where AT = active transport (mmol N m-2 

d-1), B = biomass (mmol N m-2), a = 0.0052 ± 6×10-6, and c = 1.29 ± 0.0004, R2 = 0.90, p<<10-9.  Similar 555 

relationships were also determined for the respiration/excretion component of active transport (E = aBc, a = 0.0037 ± 

4×10-6, b = 1.02 ± 0.0005, R2 = 0.87, p<<10-9) and the mortality component of active transport (M = aBc, a = 

0.00054 ± 10-6, b = 2.04 ± 0.001, R2 = 0.89, p<<10-9).  As expected, since excretion is density-independent while 
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mortality is density-dependent, the exponent of the excretion power law was ~1 and the exponent of the mortality 

power law was ~2.  This led to mortality becoming a greater fraction of total active transport as mesozooplankton 560 

biomass increased (Fig. 10d).  The transition from active transport dominated almost entirely by respiration to active 

transport comprised mostly of mortality at depth occurred rapidly as biomass increased past ~5 mmol N m-2.  As a 

result of the density-dependent parameterization of mortality, daytime mortality also increased with increasing 

zooplankton biomass (m = aBc, where m is specific mortality (h-1) a = 2.6×10-4 ± 5×10-6, and b = 0.995 ± 0.001, R2 = 

0.68, p<<10-9).  This generated daily mortality rates (i.e., over a 12-h daytime period) of ~0.3% d-1 at a biomass of 1 565 

mmol N m-2 and ~6% d-1 at a biomass of 20 mmol N m-2 (Fig. 10e).  Overall mortality for vertically-migrating 

mesozooplankton was approximately evenly split between the epi- and mesopelagic, although this ratio was poorly 

constrained by the model (Fig. 10f).  For instance, 9% - 96% of large-mesozooplankton mortality occurred in the 

mesopelagic (at the 95% C.I.). 

 As suggested by the validation data, vertical migrator biomass was primarily found in the large (>1-mm) 570 

mesozooplankton size class.  The large mesozooplankton were also predominantly vertical migrators, while the 

small mesozooplankton were primarily epipelagic residents (Fig 10g).  Consequently, large mesozooplankton 

typically dominated active transport (Fig. 10h) even though small mesozooplankton usually contributed 

proportionally more to active transport than to biomass as a result of higher specific respiration rates (Fig. 10i).    

It would be reasonable to assume that predator-induced mortality in the deep ocean would be negatively 575 

correlated with the abundance of diel-vertical migrators, because high mortality would yield a competitive 

advantage for epipelagic-resident zooplankton.  For the full dataset, however, we found a negligible correlation 

between the mesopelagic mortality term for large mesozooplankton (mortday,PZDVM) and large mesozooplankton 

biomass (Spearman’s ρ = -0.0077).  When investigating this correlation for individual experiments, the correlation 

was sometimes positive and sometimes negative.  This lack of a correlation was driven by strong correlations 580 

between the mortday,PZDVM and both the assimilation efficiency of these zooplankton and their maximum grazing rate 

on smaller mesozooplankton.  This led to a compensatory higher growth rate to offset the higher mortality rate and 

consequently to a reasonably strong correlation between mortday,PZDVM and the magnitude of export attributable to 

predation on large mesozooplankton in the deep ocean (ρ = 0.25).   

4. DISCUSSION 585 

4.1. Biological carbon pump pathways 

Gravitational flux is by far the most well studied pathway of the BCP, because it is the only pathway for which 

direct in situ flux measurements are possible.  Nevertheless, incredibly sparse in situ sampling necessitates 

spatiotemporal extrapolation approaches to derive regional and global estimates of gravitational flux, including the 

use of forward models, inverse models, and satellite algorithms (e.g., Schlitzer, 2004; Laws et al., 2000; Hauck et 590 

al., 2015).  Satellite algorithms, as perhaps the most widely used and cited methods for deriving global estimates, 

deserve special attention.  These approaches have delivered widely varying estimates of the magnitude of 

gravitational flux, and indeed the algorithms underlying such estimates often differ in the fundamental relationship 

predicted between sinking particle flux and phytoplankton biomass and production (Laws et al., 2000; Siegel et al., 

2014; Henson et al., 2011; Dunne et al., 2005).  Such studies typically estimate export flux from relationships with 595 

net primary production (or surface chlorophyll) and/or temperature because these properties are easily observable by 
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satellite remote sensing.  These studies, however, have reached widely differing relationships about the relationships 

of these properties to export efficiency (e-ratio = gravitational flux / net primary productivity).  Indeed, the in situ 

data compiled here shows no significant dependence of export efficiency on NPP or temperature (Figure 11a), 

because export efficiency depends not just on temperature and phytoplankton production, but also the community 600 

composition of phytoplankton and zooplankton, physiological adaptations of important taxa, and a multitude of 

ecological interactions (Turner, 2015; Buesseler and Boyd, 2009; Guidi et al., 2016).  Indeed, focusing only on the 

regions studied here, anomalously high Synechococcus abundances likely result in low export efficiency in the CRD 

(Stukel et al., 2013; Saito et al., 2005), salp blooms drive very high export in the Chatham Rise (Décima et al., in 

review), and the diatom Thalassiosira seems to play a particularly important role in export in the CCE (Preston et 605 

al., 2019; Valencia et al., 2021).  In the latter, diatom photophysiological health is a strong predictor of export 

(Brzezinski et al., 2015), although the diatoms likely sink mainly after grazing by metazooplankton (Morrow et al., 

2018).   

Despite the diversity of processes that affect the BCP, many of which are not included in NEMUROBCP, our 

simulations reasonably reproduce the variability of export efficiency across the study regions, even though results 610 

for individual experiments are imprecise (Fig. 11).  One important process that drives variability in export efficiency 

is temporal decoupling of production and export (Henson et al., 2015; Laws and Maiti, 2019; Kahru et al., 2020).  

Despite the use of constant physical forcing throughout our 30-day simulations, they exhibit distinct temporal 

variability in biogeochemical properties.  We highlight results from one experiment in slightly aged, upwelled water 

off the California coast, using 5 different evenly spaced parameter sets chosen from our ensemble (Fig. 12).  In each 615 

of these simulations, net primary production increases early in the simulations, rapidly in some, more gradual in 

others (Fig. 12a).  Net primary production soon diverges in all of the simulations, however, with some gradually 

decreasing after the first week and others exhibiting blooms.  Gravitational flux was even more variable, with one 

simulation peaking almost immediately and others with substantial temporal lags between net primary production 

and export (Fig. 12b).  This led to substantial temporal variability in export efficiency (Fig. 12c) and quite complex 620 

relationships between gravitational flux and net primary production (Fig. 12d).   

Assessing the accuracy with which the model simulates export due to vertical mixing (variously called the eddy 

subduction pump, mixed layer pump, and/or physical pump) is more difficult.  Previous studies to quantify this 

process have either relied on indirect biogeochemical proxies (Stukel and Ducklow, 2017; Llort et al., 2018) or 

numerical models (Omand et al., 2015; Levy et al., 2013; Stukel et al., 2018b) to quantify these processes.  Our 625 

vertical mixing results should be considered with some caution due to our overly simplified one-dimensional 

physical framework.  Nevertheless, it is reassuring that our simulations from the CCE, which showed that vertical 

mixing out of the euphotic zone was often similar in magnitude to gravitational flux and at times even higher, is 

similar to results based on a Lagrangian particle model developed for the region (Stukel et al., 2018b).  More 

realistic estimates for all regions could be derived by coupling NEMUROBCP and our parameter ensembles to a 630 

three-dimensional ocean simulation. 

The magnitude of active transport mediated by diel-vertically migrating zooplankton in the global ocean 

remains highly uncertain due to a paucity of measurements and the difficulty of constraining the amount of mortality 

occurring at depth.  Studies that include only respiration and/or excretion of zooplankton at depth typically find that 

active transport is a relatively small fraction of gravitational flux (Steinberg et al., 2000; Hannides et al., 2009).  635 
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However, more recent studies that have attempted to incorporate mortality experienced in the deep ocean have 

derived much larger estimates of active transport (Kelly et al., 2019; Kiko et al., 2020; Hernández-León et al., 2019).  

These studies should be considered highly uncertain, however, because they necessarily make large assumptions 

about the amount of zooplankton mortality occurring in the deep ocean, where it has never been directly quantified.  

Results from our study, which does include mortality at depth, suggests that active transport is a quantitatively 640 

important, but never dominant component of the BCP, in line with results from a recent global estimate derived 

from a combination of satellite remote-sensing products and modeling approaches (Archibald et al., 2019). 

One aspect of the BCP that our current euphotic-zone only simulations do not address is sequestration 

efficiency in the mesopelagic (Kwon et al., 2009; Marsay et al., 2015; Buesseler and Boyd, 2009).  It is reasonable 

to surmise that the remineralization length scale will vary for different BCP pathways and be regionally variable as 645 

well.  With gravitational flux, typically ~50% of particles will sink 100 m beneath the euphotic zone before 

remineralization, although remineralization length scales are highly variable and the spatial patterns are poorly 

understood (Buesseler and Boyd, 2009; Marsay et al., 2015).  Meanwhile, vertically-migrating zooplankton typically 

reside at depths of 200 – 600 m during the day and hence respire the majority of their carbon dioxide at this depth 

(Bianchi et al., 2013b), although it is unclear how the inclusion of mortality at depth into our understanding of active 650 

transport will affect the overall depth of penetration of actively transported carbon into the deep ocean.  Stukel et al. 

(2018b), suggested that subducted particles in the southern CCE are mostly remineralized near the base of the 

euphotic zone with little penetration into the mesopelagic, although in regions with deep convective mixing, 

signatures of subduction show substantial transport into the deep ocean (Omand et al., 2015; Llort et al., 2018).  

Boyd et al. (2019) surmised that active transport may have the greatest sequestration efficiency, followed by vertical 655 

mixing, then gravitational flux, although their synthesis was only able to draw from the few studies that have 

quantified these processes and they note that determining the sensitivities of sequestration efficiencies to 

environmental drivers is crucial to predicting climate change impacts on marine carbon sequestration.  We believe 

that future incorporation of our model ensemble approach into three-dimensional coupled modeling frameworks 

could be an important step forward in understanding the magnitude, and uncertainty in these processes. 660 

4.2. Data-assimilating biogeochemical models 

 Implicit to our OEPMCMC approach is the philosophical realization that our model (like all biogeochemical 

models) oversimplifies an incredibly complex system.  Hence, we accept that no single solution set will accurately 

simulate all aspects of the BCP.  Instead, we proposed a mechanistic-probabilistic approach that explicitly 

investigates the ecosystem uncertainty.  This contrasts with some other data-assimilation approaches (e.g., gradient-665 

based methods including the variational adjoint, Schartau et al., 2001; Friedrichs et al., 2007; Lawson et al., 1995) 

that seek to find a single solution that minimizes model-data misfit.  While the variational-adjoint approach is 

computationally efficient and allows objective determination of a single solution that can then be used for high-

resolution simulations (Mattern et al., 2017), our work shows that very different parameter sets can result in similar 

cost function values, despite generating distinctly different model outputs.   670 

Our approach has similarities with other biogeochemical model ensemble approaches.  For instance, Doron et 

al. (2013) used an ensemble Kalman filter algorithm to assimilate surface chlorophyll data and determine regional 

variability in biogeochemical parameters for a simple ecosystem model.  Gharamti et al. (2017a; 2017b) used a 
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modified approach to simultaneously estimate model parameters and state variable distributions to enable reasonably 

accurate ensemble predictions of modeled processes.   These Kalman filter approaches are widely used in physical 675 

sciences for state estimation, re-analyses, and prediction purposes, although the data-assimilating state variable 

updates sacrifice true dynamical consistency.  Meier et al. (2011) used dynamically consistent model ensembles 

generated from three different biogeochemical models forced with four climate projections and three different 

nutrient loading scenarios to investigate increasing hypoxia in the Baltic Sea.  Garnier et al. (2016) used a 

probabilistic version of the NEMO/PISCES model to generate a 60-member ensemble simulation of chlorophyll in 680 

the North Atlantic that accounts for uncertainties in biogeochemical parameters and sub-grid scale processes.  Gal et 

al. (2014) conducted a single model ensemble approach similar to ours in which they perturbed the most sensitive 

parameters in their model to investigate whether trends associated with different nutrient loading scenarios were 

consistent across the ensemble, although their approach did not use data assimilation to determine the different 

parameter values used.  Ramondenc et al. (2020) used the statistical model check engine to assimilate laboratory and 685 

in situ observations to probabilistically constrain parameters associated with scyphozoan growth and degrowth.  

Anugerahanti et al. (2018) conducted a model ensemble approach in which, rather than modifying parameter values, 

they modified the functional form of key transfer functions associated with nutrient uptake, grazing, and mortality 

while simulated chlorophyll, nutrients, and primary production at 5 time-series sites.  They discovered that the 

model was especially sensitive to modifications to the grazing and mortality functions.  A further study 690 

(Anugerahanti et al., 2020) simultaneously perturbed physical circulation fields and the biogeochemical model and 

found that results were most sensitive to variability in the biological model.  The result of these ensemble 

approaches is a probabilistic estimate of model outputs that (hopefully) accurately reflects true uncertainty in the 

system.  Our OEPMCMC approach, by utilizing field data to automate the choice of parameter sets to be used in the 

model ensemble, allows us to generate one million different dynamically consistent model realizations that each fit 695 

the available data, while simultaneously exploring different regions of the solution space with regard to uncertainties 

in all of the modeled parameters.  We consider this to be a reasonable tradeoff for the increased computational 

expense of our approach (relative to the variational adjoint or Kalman filter approaches), while noting that each 

approach has distinct advantages or disadvantages for different applications.  

An additional novelty of our study is the variety of different data types assimilated into the model (30 different 700 

rate and standing stock measurement types).  Most data-assimilating biogeochemical models only incorporate data 

associated with nutrients and/or surface chlorophyll and other remotely-sensed parameters (e.g., Xiao and 

Friedrichs, 2014b; Mattern et al., 2014; Wang et al., 2012).  The incorporation of multiple data types spanning 

trophic levels and biogeochemical processes is important to model validation, because models can often reasonably 

simulate time series of one particular variable, with unrealistic dynamics of associated trophic levels.  Ciavatta et al. 705 

(2014) found that assimilation of light attenuation coefficient data improved model prediction of light attenuation 

coefficient data, but did not improve model estimates of surface chlorophyll, and even degraded model performance 

in some regions.  Furthermore, assimilation of only noisy standing stock data can lead to model overfitting and 

inability to retrieve accurate model parameters, even in an idealized model (Löptien and Dietze, 2015).  The few 

studies that have attempted to incorporate many measurement types have focused on nutrient and phytoplankton 710 

parameters.  For instance, Kim et al. (2021) assimilated standing stock data associated with 9 model compartments 

along with net primary production and bacterial production into a model of an Antarctic coastal ecosystem but 

incorporated no metazoan zooplankton data.  In a model simulating three distinct open ocean regions, Luo et al. 
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(2010) incorporated only one zooplankton parameter (mesozooplankton biomass) amongst 17 assimilated data types, 

mostly associated with non-living compartments.  By contrast, we incorporate an extensive suite of group-specific 715 

protistan grazing rate measurements and biomass and grazing rate measurements for each of our 4 metazoan 

zooplankton groups.  While these provide realistic bounds within which zooplankton dynamics can vary, 

zooplankton parameters still remain among the least constrained parameters in our model due to the difficulty of 

making zooplankton rate measurements (e.g., the paucity of grazing measurement relative to net primary 

production) and the fact that most zooplankton measurements (derived from net tows) inherently integrate over 720 

broad depth ranges.  The weak constraints on zooplankton processes are particularly important in light of multiple 

studies that have shown that even subtle changes in grazing formulations can fundamentally alter biogeochemical 

behaviors of models (Sailley et al., 2015; Gentleman and Neuheimer, 2008; Schartau et al., 2017; Chenillat et al., 

2021; Sailley et al., 2013; Prowe et al., 2012) and the crucial roles of metazoan zooplankton for multiple pathways 

of the BCP (Buitenhuis et al., 2006; Steinberg and Landry, 2017). 725 

4.3. Future directions 

We have highlighted some of the insight about the BCP that can be gleaned from our ensemble data 

assimilation approach.  However, as noted previously, there are many limitations associated with using a simplified 

one-dimensional physical framework, and indeed a large portion of our study goal was to set the stage for more 

advanced uses of NEMUROBCP and OEPMCMC.  One obvious future step is to incorporate NEMUROBCP into three-730 

dimensional circulation models.  Although NEMUROBCP was originally written in Matlab, we are currently adapting 

it to Fortran compatible with circulation models such as ROMS, HYCOM, and MITgcm.  Three-dimensional 

NEMUROBCP simulations may take different forms.  One approach would be to use different parameter sets from 

the data ensemble in independent model runs, to conduct three-dimensional global biogeochemical model 

ensembles.  Notably, our different parameter sets are equally supported by assimilated field data, yet some predict 735 

very different ecosystem states (e. g., they vary in relative proportion of large/small phytoplankton, in turnover times 

for biota, in partitioning of organic matter between the particulate and dissolved phase, etc.).  This ensemble 

modeling approach would thus allow quantification of BCP uncertainties in four dimensions.  An alternate approach 

would be to use parameter distributions from one-dimensional simulations as prior estimates of parameters for data-

assimilation in a three-dimensional model.  These prior estimates of each parameter (and the parameter covariance 740 

matrix) could be incorporated into the cost function for many different data-assimilation approaches.  Comparison to 

satellite-observed or in situ time-series data would add powerful additional constraints on parameter values. 

Another future use of the ensemble approach would be to simulate the results of specific Lagrangian 

experiments.  In the current study, we developed an ensemble of plausible parameter sets that could be used for 

global ensemble models in the future or as prior distributions for future studies, while also assessing the uncertainty 745 

in parameter values.  These goals informed our decision to conduct a joint parameter estimation that simultaneously 

utilized data from all available experiments (rather than estimating different parameter values for each experiment or 

each region).  To simulate ecosystem dynamics for a specific experiment as accurately as possible, one would need 

to treat initial conditions and boundary values as unknown values to be determined during the optimization 

procedure.  As such, the cost function should formally be defined as a function of these unknown values: J(IC, BV, F, 750 

P) where IC represents the initial conditions (all state variables, all depths), BV is the boundary values (i.e., values of 

the state variables at the bottom boundary of the model), F is the physical forcing, and P is the parameter set.  While 
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this introduces a large number of additional unknown variables to solve for, it also justifies use a more stringent cost 

function (e.g., the likelihood function).  Thus to use NEMUROBCP to model a specific Lagrangian experiment (e.g., 

time-varying conditions during the North Pacific EXPORTS Lagrangian study, Siegel et al., 2021), we recommend 755 

treating our results for estimated global ranges of parameters as prior values in a Bayesian analysis to 

simultaneously constrain IC, BV, F, and P for that Lagrangian experiment.   

In the current study, we incorporated a broad suite of standing stock and rate measurements spanning nutrients, 

phytoplankton, zooplankton, and non-living organic matter, because our goal was to simultaneously constrain all 

parameters in the model while investigating overall uncertainty in model outputs.  However, Loptien & Dietze 760 

(2015) noted that specific parameters and processes can be better constrained if only the most relevant type of data is 

included.  We thus suggest that targeted choice of data types to assimilate could allow the use of OEPMCMC for 

investigation of specific processes that are difficult to directly measure in situ.  For instance, zooplankton mortality 

at depth has been hypothesized to be a potentially important component of the BCP (Kelly et al., 2019; Hernández-

León et al., 2019), but estimates of zooplankton mortality at depth are typically derived from either allometric 765 

relationships between zooplankton size and life span or estimates of mortality made in the upper ocean (Brett and 

Groves, 1979; Hirst and Kiørboe, 2002; Ohman and Hirche, 2001).  By incorporating only the data sources that offer 

the most constraint on zooplankton parameters (e.g., biomass and grazing rates of each zooplankton group), it may 

be possible to better constrain the fraction of mortality occurring in the deep ocean. 

NEMUROBCP was built off of the NEMURO family of models (Kishi et al., 2007), and here we only added 770 

extra state variables essential for modeling BCP pathways from the euphotic zone into the mesopelagic.  There are, 

of course, multiple additional processes that are important to simulating marine biogeochemistry and the BCP that 

are currently absent.  Some additional processes that we consider priorities and plan to implement in future versions 

of NEMUROBCP include variable stoichiometry of organic matter, N2 fixation, and additional realism in the 

microbial community.  Elemental stoichiometry (e.g., C:N:P) can vary substantially between different organic pools 775 

and across the different BCP pathways (Hannides et al., 2009; Singh et al., 2015), is predicted to change as a result 

of ocean acidification and/or increased temperature and stratification (Oschlies et al., 2008; Riebesell et al., 2007), 

and can affect the balance between carbon sequestration and nutrient supply and regeneration leading to potentially 

enhanced carbon sequestration and growing oxygen minimum zones in a future ocean (Michaels et al., 2001; 

Oschlies et al., 2008; Riebesell et al., 2007).  Adding variable stoichiometry to NEMUROBCP is simple but will 780 

require the addition of state variables associated with each model compartment that is allowed to vary in its 

elemental ratios, with substantial added computational costs.  N2 fixation is simultaneously a source of new 

production in the absence of upwelling and a process that can substantially alter elemental stoichiometry in the open 

ocean.  It could be introduced to the model through a state variable(s) simulating diazotrophs (Hood et al., 2001) or 

through implicit parameterization (Ilyina et al., 2013).  NEMUROBCP might also benefit from added realism in 785 

microbial dynamics.  The roles of heterotrophic bacteria in particle remineralization are currently included implicitly 

in the model.  Explicit simulation of bacterial biomass and processes such as colonization of particles, microbial 

hotspots on sinking particles, production of hydrolytic enzymes, quorum sensing, and predator-prey dynamics with 

protists have the potential to more accurately simulate feedbacks that affect remineralization length scales in the 

ocean (Robinson et al., 2010; Simon et al., 2002; Mislan et al., 2014).  Additionally, the model currently includes 790 

only two phytoplankton, which were explicitly identified as diatoms and non-diatoms in this data-assimilation 

exercise.  The latter category subsumes a wide variety of different phytoplankton taxa into a group with transfer 
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functions designed to simulate picophytoplankton (especially cyanobacteria).  It thus excludes the presence of 

mixotrophs, which are abundant and diverse bacterivores in the open ocean, can survive low-nutrient and low-light 

conditions by supplementing their nutritional budget with phagotrophy, and may have distinctly different 795 

biogeochemical roles due to their decreased reliance on dissolved nutrients (Stoecker et al., 2017; Jones, 2000). 

5. Conclusions 

 The data assimilation approach utilized here is a computationally feasible method for incorporating a diverse 

suite of in situ measurements to objectively define parameter sets for ensemble modeling of the BCP.  The 30 data 

types assimilated in this study improve constraints on ecosystem dynamics.  However, some parameters, especially 800 

those related to metazoan zooplankton, remain poorly constrained by available data, despite assimilation of 8 data 

types explicitly representing metazoan zooplankton rates and standing stocks.  This likely results from a 

combination of the inherently patchy nature of many mesozooplankton populations (i.e., high measurement 

uncertainty) and the vertically integrated nature of zooplankton net tows which obscures simple relationships 

between predator abundance, prey abundance, and grazing rates.   805 

 The three BCP pathways were spatiotemporally variable across four study regions.  Despite a very simple 

physical framework, distinct patterns were identified.  Active transport was only a dominant contributor to the BCP 

in the CRD, where simulations predicted it to be responsible for 20-40% of export from the euphotic zone.  Near the 

subtropical front of the Southern Ocean and in upwelling-influenced regions of the CCE, both gravitational flux and 

vertical mixing were important components of the BCP, with the relative importance of the two determined more by 810 

differences between parameter sets, than by differences between the conditions experienced during specific 

Lagrangian experiments.  In offshore oligotrophic regions of the CCE and the GoM >80% of export was usually 

attributable to gravitational flux, although mixing dominated in a few experiments.   

Our ensemble approach highlights uncertainties around model estimates of the BCP that arise from imprecisely 

defined parameters.  Indeed, variability in many aspects of the BCP is as large comparing different (realistic) 815 

parameter sets within a specific location as it is across regions as distinctly different as the oligotrophic GoM and 

coastal CCE.  Notably, different realistic parameter sets from our ensembles predict very different export 

efficiencies (and hence magnitudes of the gravitational pump) despite similar net primary production.  This suggests 

that model validation against net primary production (or sea surface chlorophyll) data is insufficient to validate 

model skill in simulating BCP variability.  The explicit representation of thorium and nitrogen isotope dynamics in 820 

NEMUROBCP should aid in future model validation efforts.   
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Code Availability 

The core NEMUROBCP code is available on GitHub at: https://github.com/mstukel/NEMURO_BCP.  The code 

necessary to run the objective ensemble parameterization procedure can be found at: 825 

https://github.com/mstukel/OEP_MCMC_NEMURObcp. 

 

Data Availability 

Field data used in this manuscript is available on either the CCE LTER Datazoo repository 

(https://oceaninformatics.ucsd.edu/datazoo/catalogs/ccelter/datasets) or the Biological and Chemical Oceanography 830 

Data Management Office repository: https://www.bco-dmo.org/project/834957, https://www.bco-

dmo.org/project/819488, and https://www.bco-dmo.org/project/754878.  For ease of access it is also included in 

Supp. Tables S2-S4.  The data file containing all model outputs (from all ensembles) is too large to deposit but can 

be generated from the code on GitHub.  A summarized version (every 1000th iteration) is included as Supp. Table 

S5, summary statistics are given in Supp. Table S1, with the correlation and covariance matrices given in Supp. 835 

Table S6.   
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 1445 

 

 

Table 1.  State variables in NEMUROBCP 

 Abbreviation Description Units 

Core model   

 SP Small (non-diatom) phytoplankton mmol N m-3 

 LP Large phytoplankton (diatoms) mmol N m-3 

 SZ Small (protistan) zooplankton mmol N m-3 

 LZRES <1-mm epipelagic-resident mesozoopankton mmol N m-3 

 LZDVM <1-mm diel-vertically-migrating mesozooplankton mmol N m-3 

 PZRES >1-mm epipelagic-resident mesozoopankton mmol N m-3 

 PZDVM >1-mm diel-vertically-migrating mesozooplankton mmol N m-3 

 NO3 Nitrate mmol N m-3 

 NH4 Ammonium mmol N m-3 

 PON Slowly-sinking detritus mmol N m-3 

 LPON Rapidly-sinking detritus mmol N m-3 

 DON Labile dissolved organic nitrogen mmol N m-3 

 DONref Refractory dissolved organic nitrogen mmol N m-3 

 SI Silicic acid mmol Si m-3 

 OP Slowly-sinking opal (biogenic silica) mmol Si m-3 

 LOP Rapidly-sinking opal (biogenic silica) mmol Si m-3 

 CHLPS Chlorophyll associated with small phytoplankton mg Chl a m-3 

 CHLPL Chlorophyll associated with large phytoplankton mg Chl a m-3 

 OXY Dissolved oxygen mmol O m-3 

Carbon submodule   

 DIC Dissolved inorganic carbon mmol C m-3 

 ALK Alkalinity mmol m-3 

234Thorium submodule  

 dTh Dissolved 234Th dpm L-1 

 SPTh 234Th adsorbed to small phytoplankton dpm L-1 

 LPTh 234Th adsorbed to large phytoplankton dpm L-1 

 SZTh 234Th adsorbed to small zooplankton dpm L-1 

 LZRESTh 234Th adsorbed to LZRES dpm L-1 

 LZDVMTh 234Th adsorbed to LZDVM dpm L-1 

 PZRESTh 234Th adsorbed to PZRES dpm L-1 

 PZDVMTh 234Th adsorbed to PZDVM dpm L-1 

 PONTh 234Th adsorbed to slowly-sinking detritus dpm L-1 
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 LPONTh 234Th adsorbed to rapidly-sinking detritus dpm L-1 

Nitrogen isotope submodule  

 SPN15 15N in small phytoplankton mmol 15N m-3 

 LPN15 15N in large phytoplankton mmol 15N m-3 

 SZN15 15N in small zooplankton mmol 15N m-3 

 LZRESN15 15N in LZRES mmol 15N m-3 

 LZDVMN15 15N in LZDVM mmol 15N m-3 

 PZRESN15 15N in PZRES mmol 15N m-3 

 PZDVMN15 15N in PZDVM mmol 15N m-3 

 NON15 15N in nitrate mmol 15N m-3 

 NHN15 15N in ammonium mmol 15N m-3 

 PONN15 15N in slowly-sinking detritus mmol 15N m-3 

 LPONN15 15N in rapidly-sinking detritus mmol 15N m-3 

 DONN15 15N in labile DON mmol 15N m-3 

 DONREFN15 15N in refractory DON mmol 15N m-3 
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Figures 1450 

 

 

Figure 1 -   Schematic depiction of core NEMUROBCP model.  Arrows show transfer functions (orange = Si flux; 

blue = N flux).  Rectangles show state variables (SiOH3 = silicic acid; NO3 = nitrate; NH4 = ammonium; Opalsmall = 

small biogenic silica; Opallarge = large biogenic silica; DONref = refractory dissolved organic nitrogen; DONlabile = 1455 

labile dissolved organic nitrogen; PONsmall = small detritus; PONlarge = large detritus; DTM = diatoms; PS = small 

phytoplankton; Chll = diatom chlorophyll; chls = small phytoplankton chlorophyll; ZS = protistan zooplankton; ZLres 

= <1-mm metazoan zooplankton that are resident in the euphotic zone; ZLdvm = <1-mm diel-vertically-migrating 

metazoan zooplankton; ZPres = >1-mm metazoan zooplankton that are resident in the euphotic zone; ZPdvm = >1-mm 

diel-vertically-migrating metazoan zooplankton.  Oxygen is also a state variable but is not shown in this figure. 1460 
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Figure 2 – Locations of our in situ Lagrangian experiments (blue = California Current Ecosystem, Brown = Gulf of 

Mexico, Green = Costa Rica Dome, Magenta = Chatham Rise).  
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 1465 

Figure 3 – OEPMCMC parameter distributions for bottom-up control of small phytoplankton.  Line plots on top are 

probability density functions for individual parameters (see bottom for label and axes).  Colored plots are heat maps 

showing joint parameter distributions.  Parameters are: maximum growth rate at 0°C (Vmax,SP, units = d-1), half-

saturation constant for nitrate uptake (KNO,SP, mmol N m-3), half-saturation constant for ammonium uptake (KNH,SP, 

mmol N m-3), initial-slope of the photosynthesis-irradiance curve (αSP, m2 W-1 d-1), photoinhibition parameter (βSP, 1470 

m2 W-1 d-1), respiration rate at 0°C (resSP, d-1), linear mortality term at 0°C (mortSP, d-1), excretion parameter (excSP, 

unitless), ammonium inhibition of nitrate uptake (inhNH,NO,SP, m3 mmol N-1). 
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Figure 4 – OEPMCMC parameter distributions for large phytoplankton and some other other model processes.  Line 1475 

plots on top are probability density functions for individual parameters (see bottom for label and axes).  Colored 

plots are heat maps showing joint parameter distributions.  Parameters are: maximum growth rate at 0°C (Vmax,LP, 

units = d-1), initial-slope of the photosynthesis-irradiance curve (αLP, m2 W-1 d-1), half-saturation constant for NH4
+ 

uptake (KNH,LP, mmol N m-3), maximum grazing rate of small zooplankton on large phytoplankton (gmax,SZ,LP, d-1). 

maximum grazing rate of large (>1-mm) epipelagic-resident mesozooplankton on small phytoplankton (gmax,PZRES,SP, 1480 

d-1), maximum grazing rate of large (>1-mm) vertically-migrating mesozooplankton on small (<1-mm) 

mesozooplankton (gmax,PZDVM,LZ, d-1), the Ikeda respiration parameter for small (<1-mm) mesozooplankton, daytime 

mortality rate for small (<1-mm) vertically-migrating mesozooplankton (mortday,LZDVM, m3 mmol N-1 d-1), 

remineralization rate of DON to NH4
+ (refdec,DON,NH, d-1). 

 1485 
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Figure 5 – Model-data net primary production comparison.  Blue box plots show model results for each simulated 

Lagrangian experiment, with whiskers extending to 95% confidence limits.  Yellow diamonds show observations 1490 

from Lagrangian experiments. 

 

 

Figure 6 – Model-data sinking particle export comparison.  Blue box plots show model results for each simulated 

Lagrangian experiment, with whiskers extending to 95% confidence limits.  Yellow diamonds show observations 1495 

from sediment trap deployments (no observations were available for 9 experiments). 
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Figure 7 – Model-data water-column 234Th activity comparison.  Dark blue lines show mean vertical profile of 234Th 

activity from MCMC model simulations with lighter blue shading indicating 95% C.I.  Red diamonds show 1500 

observations.  Each panel is for a separate Lagrangian experiment. 
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Figure 8 – Model-data comparison of C:234Th ratio (a) and δ15N of sinking particles.  Color indicates region.  Error 

bars are ±1 standard deviation.  Black line is the 1:1 line.  Observations are derived from sediment trap 

measurements.   1505 
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Figure 9 – Triangle diagrams showing the proportion of export due to each biological carbon pump pathway.  
Locations near the upper apex of the triangle indicated dominance by sinking particles, locations near the bottom left indicate dominance by 1510 
active transport, locations near the bottom right show dominance by mixing.  Colors represent the proportion of total model simulations with 

export patterns falling within a specific proportion of different export pathways.    Lines indicated contours showing a constant proportion of one 

BCP pathway (i.e., red lines are constant proportions of active transport, blue lines are constant proportions of gravitational flux, and purple lines 

are constant proportions of mixing flux).  a) results for all simulations, b) results for a typical CCE coastal site (1604-3), c) typical CCE 

oligotrophic site (1408-5), d) typical Costa Rica Dome site (CRD-1), e) typical Gulf of Mexico site (GoM-5), f) typical Chatham Rise site (Salp-1515 
5), g) example of a CCE site (0605-3) dominated by mixing flux. 
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Figure 10 – Heatmaps of active transport (a), active transport due to excretion in the deep ocean (b), active transport due to mesozooplankton 

mortality at depth (c), the fraction of active transport that was due to mortality at depth (d), and the daytime specific mortality experienced by 1520 
mesozooplankton at their mesopelagic resting depths (e), all as a function of the total biomass of vertically-migrating mesozooplankton (i.e., sum 

of both size classes).  Black lines and equations in a, b, c, and d were determined from ordinary least squares regressions of log-transformed data 

(see text for regression statistics). (f) shows the probability density function for the fraction of large (>1 mm) mesozoolpankton mortality 

experienced during the day at their mesopelagic resting depths. (g) and (h) show normalized histograms of log10-transformed zooplankton 

biomass and active transport, respectively.  Dashed blue line is small epipelagic-resident zooplankton, solid blue is small DVM zooplankton, 1525 
dashed red is large epipelagic-resident zooplankton, solid red is large DVM zooplankton.  (i) shows the fraction of active transport mediated by 

large mesozooplankton (>1 mm) as a function of their fraction of total vertically-migrating mesozooplankton biomass.  Dashed gray line is the 

1:1 line. 
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 1530 

Figure 11 – Gravitational flux as a function of net primary production for in situ data (a) and model results (b).  

Averages and standard deviations are shown for individual Lagrangian experiments.  Nitrogen-based model results 

were converted to carbon units assuming a C:N ration of 106:16 (mol:mol).  Background in both figures is a 

heatmap of all model results (i.e., all Lagrangian experiments and all parameter sets).  Solid black lines show 

contours of constant e-ratio (=gravitational flux / net primary production).   1535 

 

 

Figure 12 – Temporal variability in net primary production (a, mmol C m-2 d-1), gravitational flux (b, mmol N m-2 

d-1), and export efficiency (c, unitless with a C:N conversion ratio of 106:16 mol:mol), along with a phase-space plot 

depicting the same data (d).  All plots are from Lagrangian experiment 1604-3 (CCE upwelling region).  Different 1540 

colors are for simulations with ensemble parameter sets 2×105, 4×105, 6×105, 8×105, or 106.  

https://doi.org/10.5194/bg-2022-7
Preprint. Discussion started: 7 February 2022
c© Author(s) 2022. CC BY 4.0 License.


